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Neutron Interferometry in Gravitational Field 
with Torsion 
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We consider the possibility of finding experimental evidence of the fifth force 
with the measurement of a phase shift of neutron beams via an interferometric 
apparatus and also a possible rotation of the polarization plane of polarized 
neutron beams when torsion is introduced in a gravitational field. 

1. I N T R O D U C T I O N  

A large number  of  theoretical models and experiments claim the exist- 
ence of new intermediate-range forces. Results of  the experiments (Stacey et  

al., 1987; Thierberger, 1987; Stubbs et  al., 1987; Niebauer  et al., 1987; 
Boynton et al., 1987) and phenomenological considerations suggest that 
there might be a deviation f rom the Newtonian inverse square law with a 
potential of  the form 

V(r)  = - G ~ ( g / r ) ( 1  + A V )  (1) 

Here A V(r) is caused by existence of  a new type of  interaction called the 
"fifth force." 

Evidently there are several questions. The most  important  of  them are: 

(a) I f  the "fifth force" exists, to what attribute of  matter  could it 
couple? 

(b) What  is (are) the mediating particle (particles) of  the "fifth 
interaction"? 
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(c) What types of new effects both in classical and quantum regions 
can be predicted in the presence of the new interaction? 

At present there are different opinions on the possible existence and nature 
of  a "fifth force" and there are numerous classes of unified field models in 
which the new types of interactions can be predicted. In this paper we 
consider the quantum treatment of  the fifth force due to the exchange of 
tordions in the frame of  gauge gravitational theory, and regard two possible 
ways for experimental verification of this model of the fifth interaction. In 
the next section we give a phenomenological description of the neutron 
interferometry scheme. In Section 3 we propose models for fifth force media- 
tors, i.e., mediating particles. Finally, in the last section we consider a neu- 
tron interferometry effect due to the interaction of neutrons with a "tordion 
field." 

2. FIFTH FORCE AND N E U T R O N  INTERFEROMETRY 

The fifth force is usually assumed to have a potential of  the form 
(modification of  the Newton law) 

V(r) = -G~(M/r ) [1  + a exp(- r /A)]  (2) 

The potential energy due to gravity and an extra Yukawa interaction 
between two macroscopic bodies is given by 

VE(r) = - f drl dr2 [G~p(r1)p(rz)/r12][ l + a exp(-r12/$)] (3) 

where pl and p2 are mass densities, a is the strength of coupling of the fifth 
force, and ,~ is the range. 

The energy contribution of the fifth force to the potential energy of  a 
single neutron in the Earth's gravitational field is given by integration over 
the distribution of mass density acting on the neutron as 

f d3r ' [ p ( r ' ) / l f - f ' l ]  e x p ( - l e - r  I/;t) (4) Vr(r)=(Go~E,a/c 2) 

where E, is the neutron energy. For  nonrelativistic neutrons E,/e  2 =m,  is 
the neutron rest mass. Integrating over the Earth volume and approximately 
assuming a uniform density, p = 3Me/4rcR 3 , where M e and R e are, respec- 
tively, the mass and radius of the Earth. 

Assuming X / R e  << 1 (as 2~ ~ 200 m + 1 km << R e - 10  4 km), the above 
formula gives the additional potential energy contribution due to the fifth 
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force acting on a neutron as (a neutron at the Earth's surface r~-Re) 

VF( R e ).= (E,/c2)a( G~ M e / R  e )( )-/R e )2 (5) 

So for neutrons of different energies En~ and E,  2 the energy difference is 

h VF(Re ) = (E , , -  En2/e2)a(GMe/Re )()-~Re )2 (6) 

For  20- and 10-GeV neutrons we find, with a---10 -3, )----200m, 
R e - 6.4 • 108 cm, and a()-/Re )2 _ 9 x 10-13 _ 10- lz 

AV(Re ) ~ 10-14 eV (7) 

For  neutrons at rest or nonrelativistic neutrons 

V F ( R  e ) "" 10- 3 a ( ) - / R e  )2 ~,~ l0-15 eV (8) 

Now let us consider the phase shift on a neutron in a neutron interfero- 
meter. A gravitational phase shift was found in experiment (Colella et al., 
1975) and it is 

[ Acb6 [ = 4z(m/h)(g/2v)A (9) 

where m is the gravitational mass, g is the acceleration due to gravity, v is 
the velocity of  neutrons moving in the field, and A is the area enclosed by 
the interferometer beam paths. The explicit expression for [AcI)~[ is 

[A~G [ = [A~o [[1 + (1/2)(gH/c2)] (10) 

where 

I Ar = 4z(mo/h)(g/2v)A (11) 

(with m0 the rest mass of  neutron) and gH/c 2 is the gravitational potential 
energy and H is the height difference of the paths. In general 

m = m0(1 + 2gH/c2)(1 + 2gH/c 2 - v2/c2) -I/2 (12) 

and we can consider the relativistic effects. 
In the presence of  the fifth force we have an additional contribution to 

the potential energy of the neutron, i.e., to gH/c 2, i.e., 

gH/c2+ Vg(Re) or AVF(Re) (13) 

in case of different energies. Then the phase shift is 

I ACtor I = Ar + 1/2(gH/c 2) + (En/c2)a(GMe/Re )()./Re )2] (14) 

Evidently the fifth force effect will be smaller then the gravitational one. But 
there is one principal and important discrepancy. If  we have horizontal 
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parallel beams or, better, if we think of some experiment in a satellite, then 
H =  0 and we have a net result for the fifth force term 

I A ~ 5  [ = • (Go MeAE/R~)  (15) 

We can see that the phase shift will take place in this case in the horizontal 
position of the interferometer. 

Let us consider the most general potential for the fifth force (Talmadge 
and Fischbach, 1988), introducing also a composition dependence, but con- 
sidering only the first term in the potential and only the baryon-dependent 
part: 

V(r) = - (G~M/r ) [1  + ao exp(-r /2o) - ~0q~ e x p ( - r / ~ ) ]  (16) 

where ao and ~0 are constants which respectively describe the universal 
and nonuniversal (i.e., composition-dependent) contributions and qs = B /p  
(with B the baryon number and/z the atomic mass of the body). 

After a calculation analogous to that performed above, we obtain the 
formula for the phase shift (we suppose that H =  0) : 

[Aq)5 [ = A(I)o[ 1 4- (E,,/c2)(GM~/R3)(aoAo- ~0q.20)] (17) 

Now we can perform a "null" experiment to verify the existence of the fifth 
force. If  I Aq~51 - I A~o l  = 0, it is only an indication of the equality of two 
exchanges due to scalar massive particles and due to vector particles. If  
I A@51 - I A~ol < or >0, we can estimate the fifth force effect. 

An extremely important question is the problem of the mediating 
particles of the fifth force (de Sabbata and Sivaram, 1990). 

3. GAUGE GRAVITY WITH TORSION 

Now let us consider gravitational theory, namely the gauge treatment 
of gravity in the framework of the Poincar6 group, which allows us to 
understand the fifth force problem without an additional supposition of 
supersymmetry, scalar-tensor theory, and so on. The dynamical variables in 
the Poincar6 gauge gravitational theory will be the metric g~v and affine 
connection, which satisfy the metricity condition g~,v;a = 0 (Ivanenko et al., 
1985; Ponomariev et al., 1985; de Sabbata and Gasperini, 1985). The base 
manifold for the Poincar6 gauge gravitational theory will be the Riemann- 
Cartan space-time or U4. 

The most general gravitational Lagrangian includes more than 150 
terms, which are second degree in curvature and fourth degree in the torsion 
field. The curvature and torsion are the field strengths for the local Lorentz 
connection and vierbeins. We do not need to use such a complicated gravita- 
tional Lagrangian to demonstrate the principal possibility of the origin of the 
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Yukawa type of interaction of fermions with gravity. We restrict ourselves to 
the action: 

S = fd4x (-g)l/2[(1/16rrG~)R(g, Q)- (1/4)(Qu,v- Qv,~,) 2 

- ~t,7/" (V u -~7/sQu)~t+m~tTt] (18) 

where Qu=I/2euv~Q ~ap is the pseudotrace of torsion, and ~ is the 
unknown spin-torsion constant of interaction. 5 The exact spherically sym- 
metrical solutions of field equations in Poincar6 gauge theory (without 
matter) were obtained in Camenzind (1975), Kim and Yoon (1987), and 
Ponomariev et al. (1990). But we would like to consider the quantum nature 
of the gravitational potential. 

We regard the weak field limit and suppose that the metric and torsion 
are satisfied up to the next gauge fixing terms ~uh v" =0  and 0~Q a =0. Then 
the Lagrangian takes the form 

~e=hUVP,,vat~ nh'~a + O,,(rT+m2q)Oa-k2h'VTuv+ ~SuQ ~ (19) 

where Puv~p=�88 r T = ~ ,  Tu~ is the energy- 
momentum tensor 

S ~ is the vector of spin 

S~ = i~ 7/~ 7/5 

and mq is the mass of the mediating particle. 
The Green's functions for gravitons and tordions (the particles of the 

torsion field) are 

D ~ = P u ~  ~ .~ k + i c  

- i k x  

D~v =1~ Idk e (20b) 
2zr J k2+m~+ie 

The potential can be calculated by means of Gupta's (1977) method. We 
omit here the details of the calculation and give the final result for the 

5We can introduce two independent constants in Poincar6 gauge theory because there are two 
normal  subgroups in IS0(3 ,  1)=SO(3,  1)• T(4). For  a general discussion on the torsion 
coupling constant  see de Sabbata and Sivaram (1989). 
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potential form, which is 

Vtot: Vo-'[-AV (21) 

where V0 is the well-known potential which is caused by graviton exchange, 
and 

2 G~ [_rnq22 r " (~2 AV=~ ~ m--~q r exp(-f/2mqr) 

"~-({~l" V)(()'2" q)exp(-~)/2mqr)- 1 (22) 

is the potential due to tordion exchange. Here dl,  02 are the Pauli matrices 
for pairs of fermions. 

So it is clear that the interaction between two neutrons due to graviton 
and tordion exchanges leads to a gravitational potential exactly of the form 
(1) in the static limit. 

We would like to underline that in the proposed model we have no 
need of additional fields besides the gravitational field, because the latter is 
characterized by two independent dynamical variables: metric and torsion 
see also (de Sabbata and Gasperini, 1985; de Sabbata and Sivaram, 1990; 
de Sabbata et al., 1991 ; Ivanenko et al., 1985; Ponomariev et al., 1985). The 
torsion field interacts with spins of particles and the neutron fields will have 
an additional phase shift due to this interaction. 

4. EFFECTS OF TORSION 

We can consider the special effect of torsion on the interferometer. In 
that case we may have an additional term in energy like 3G2SZ/c4R 4, so in 
an experimental arrangement in which H= 0, we have a net result (gH/c 2= 
0, ~= 1/16zG) 

1Ar [ = I A~0 I( 1 + 3GS2/d4n;) (23) 

But in the interaction of torsion with spins we have a principally new picture, 
namely, polarization plane rotation (de Sabbata and Gasperini, 1982; de 
Sabbata and Sivaram, 1989a; Pronin, 1987). Now let us consider some 
details of interferometry with polarized neutrons in an external torsion field. 

To separate the spin-torsion interaction effect, we restrict consideration 
to Minkowski-Cartan space, supposing that Q~= {0, Q}, where Q is a 
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constant vector, guy = r/~v = d i a g ( 1 , -  1 , - 1 , -  1). Then the Pauli equation 
for spinors is 

in~ 0) (24) 
We assume that the neutron beams (I and II) are polarized in the antiparallel 
direction to the z axis. Then the spinor normalized functions are 

~ti-- I +z)=[01], ~n=ei~176 (25) 

where 0 is the phase shift. 
If  the external torsion field equals zero, the degree of  polarization of 

the beam after interferometry is 

/5= ~f+ c~Vts= {0, 0, -1}  (26) 
v/v  

w h e r e  IVf= IV I -q-- IPr 

But in the situation when one (or both) neutron beam(s) interacts with 
torsion, the states ~ti and VtIT should be changed as 

Igl = s'12l'~z) + (1 - ~)'/21 $=), 
(27) 

Ilsj, =e - i~  si l2l T: } + (1 - s) ' /21 ~ : } }  

Then the integration over these beams leads to 

/5,_ ~ t f ' ~ _  {2[e(1 - e)] 1/2, 0, - 1  +2e} (28) 
vT'v'; 

and here ~ =  Vt~ + ~t~i. 
For example, when e =  1/2, we have/5 ,= {1, 0, 0}. 
So we can observe the effect of the polarized rotation plane due to 

quantum interferometry, which is caused by the previous interaction with 
torsion. 

Let us give some estimation of  the effect: we consider e ~- ~ i Q I, where 
101 is proportional to polarized particles density n. It is well known that 
I Q_.I = hen. In laboratory experiments it will be convenient to use the polar- 
ized particle beams in the accelerator. Then in the optimal situation 
(e = 1/2) we can find the upper limit on the spin-torsion interaction constant, 
because 

< 1017/2n (29) 
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